50 research outputs found

    A cell surface biotinylation assay to reveal membrane associated neuronal cues: Negr1 regulates dendritic arborization

    Get PDF
    A complex and still not comprehensively resolved panel of transmembrane proteins regulates the outgrowth and the subsequent morphological and functional development of neuronal processes. In order to gain a more detailed description of these events at the molecular level, we have developed a cell surface biotinylation assay to isolate, detect, and quantify neuronal membrane proteins. When we applied our assay to investigate neuron maturation in vitro, we identified 439 differentially expressed proteins, including 20 members of the immunoglobulin superfamily. Among these candidates, we focused on Negr1, a poorly described cell adhesion molecule. We demonstrated that Negr1 controls the development of neurite arborization in vitro and in vivo. Given the tight correlation existing among synaptic cell adhesion molecules, neuron maturation, and a number of neurological disorders, our assay results are a useful tool that can be used to support the understanding of the molecular bases of physiological and pathological brain function

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    Human and mouse essentiality screens as a resource for disease gene discovery.

    Get PDF
    The identification of causal variants in sequencing studies remains a considerable challenge that can be partially addressed by new gene-specific knowledge. Here, we integrate measures of how essential a gene is to supporting life, as inferred from viability and phenotyping screens performed on knockout mice by the International Mouse Phenotyping Consortium and essentiality screens carried out on human cell lines. We propose a cross-species gene classification across the Full Spectrum of Intolerance to Loss-of-function (FUSIL) and demonstrate that genes in five mutually exclusive FUSIL categories have differing biological properties. Most notably, Mendelian disease genes, particularly those associated with developmental disorders, are highly overrepresented among genes non-essential for cell survival but required for organism development. After screening developmental disorder cases from three independent disease sequencing consortia, we identify potentially pathogenic variants in genes not previously associated with rare diseases. We therefore propose FUSIL as an efficient approach for disease gene discovery

    Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick

    Get PDF
    Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Results One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities.</p

    Pathogenic mutation of <em>Lrrk2</em> - a Mouse Model for pre-motor Parkinson&rsquo;s disease.

    No full text
    We created a Parkinson&rsquo;s disease (PD) mouse harbouring the disease-associated point mutation R1441C in the GTPase domain of the endogenous murine Lrrk2 gene. No pathological signs of neurodegeneration can be observed in aged animals. Nevertheless, on the behavioural level we could identify several alterations reminiscent of premotor symptoms observed in PD like reduced olfaction and subtle gait alterations. Interestingly, also the analysis of a Lrrk2 knockdown mouse line did show nearly identical behavioural alterations. In vitro studies could provide hints for a role of the protein in cytoskeleton organisation as well as synaptic transmission, albeit the constitutive expression of pathogenic LRRK2 on an endogenous level seems to be compensated to a large extend. Together, both lines nicely recapitulate non-motor disturbances observed in PD patients and can therefore be seen as valid mouse models of presymptomatic Parkinson&rsquo;s disease

    Identification of ocular regulatory functions of core histone variant H3.2 in mouse.

    No full text

    Diversity matters - heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson&#39;s disease.

    No full text
    Dopaminergic neurons in the ventral mesencephalon (= the ventral mesencephalic dopaminergic complex) are known for their role in a multitude of behaviors, including cognition, reward, addiction and voluntary movement. Dysfunctions of these neurons are the underlying cause of various neuropsychiatric disorders, such as depression, addiction and schizophrenia. In addition, Parkinson&#39;s disease (PD), which is the second most common degenerative disease in developed countries, is characterized by the degeneration of dopaminergic neurons, leading to the core motor symptoms of the disease. However, only a subset of dopaminergic neurons in the ventral mesencephalon is highly vulnerable to the disease process. Indeed, research over several decades revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group with respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in different diseases. Here, we review how the concept of dopaminergic neuron diversity, assisted by the advent and application of new technologies, evolved and was refined over time and how it shaped our understanding of PD pathogenesis. Understanding this diversity of neurons in the ventral mesencephalic dopaminergic complex at all levels is imperative for the development of new and more selective drugs for both PD and various other neuropsychiatric diseases
    corecore